

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
CAMBRIDGE INTE	ERNATIONAL MATHEMATICS	0607/43
Paper 4 (Extended)	October/November 2014
		2 hours 15 minutes
Candidates answe	r on the Question Paper.	
Additional Material	s: Geometrical Instruments	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

Do not use staples, paper clips, glue or correction fluid.

You may use an HB pencil for any diagrams or graphs.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Unless instructed otherwise, give your answers exactly or correct to three significant figures as appropriate. Answers in degrees should be given to one decimal place.

For π , use your calculator value.

You must show all the relevant working to gain full marks and you will be given marks for correct methods, including sketches, even if your answer is incorrect.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 120.

This document consists of 19 printed pages and 1 blank page.

Formula List

For the equation	$ax^2 + bx + c = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Curved surface area, A, of cylin	nder of radius r, height h.	$A = 2\pi rh$
Curved surface area, A, of cone	e of radius r, sloping edge l.	$A = \pi r l$
Curved surface area, A, of sphe	ere of radius <i>r</i> .	$A = 4\pi r^2$
Volume, V , of pyramid, base an	rea A , height h .	$V=\frac{1}{3}Ah$
Volume, V , of cylinder of radiu	as r, height h.	$V = \pi r^2 h$
Volume, V , of cone of radius r ,	, height <i>h</i> .	$V = \frac{1}{3}\pi r^2 h$
Volume, <i>V</i> , of sphere of radius	Γ.	$V = \frac{4}{3}\pi r^3$
\bigwedge^A		$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
		$a^2 = b^2 + c^2 - 2bc \cos A$
		Area = $\frac{1}{2}bc\sin A$
B a	\longrightarrow_C	

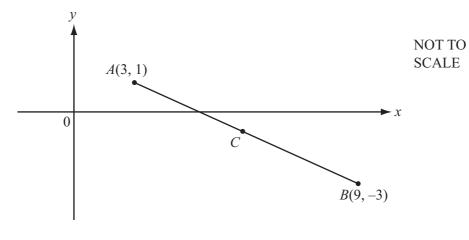
Answer all the questions.

1 (a) One year Sami paid 18% of his earnings in tax. After paying tax he had \$65 600.

How much did Sami earn before paying tax?

Answer(a) \$ [3]

- (b) Sami and Jennie each have \$5000 to invest. They both invest in accounts that give compound interest.
 - (i) Sami invests in an account that gives 4% interest in the first year, 3% interest in the second year and 2% in any year after that.


Calculate the value of Sami's investment after 3 years.

Answer(b)(i) \$ [3]

(ii) Jennie's investment gives 2.5% compound interest each year.

After 5 years, how much more is the value of Sami's investment than Jennie's?

Answer(b)(ii) \$ [3]

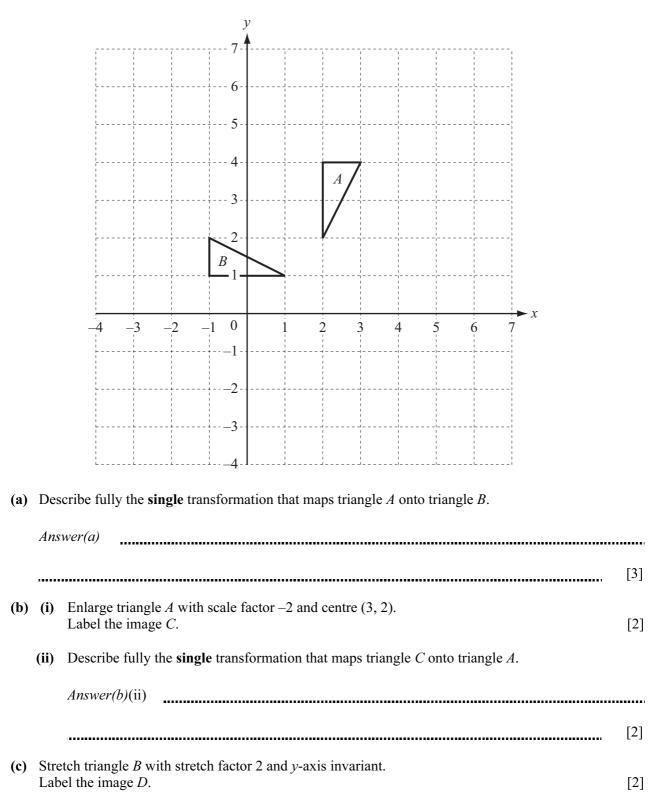
4

A is the point (3, 1) and B is the point (9, -3).

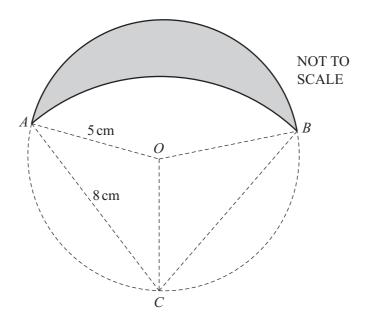
(a) C is the midpoint of AB.

Find the co-ordinates of C.

Answer(a) (, ,) [1]


(b) Find the equation of the line, through C, perpendicular to AB.

Answer(b) [4]


(c) The line AB meets the y-axis at P.The line in part (b) meets the y-axis at Q.

Find the distance PQ.

Answer(c) [2]

5

6

The shaded region is formed by the arcs of two circles. One circle has centre O and radius 5 cm. The other has centre C and radius 8 cm. The points A, B and C are on the circumference of the circle, centre O.

(a) Calculate angle ACO and show that it rounds to 36.87° correct to 2 decimal places.

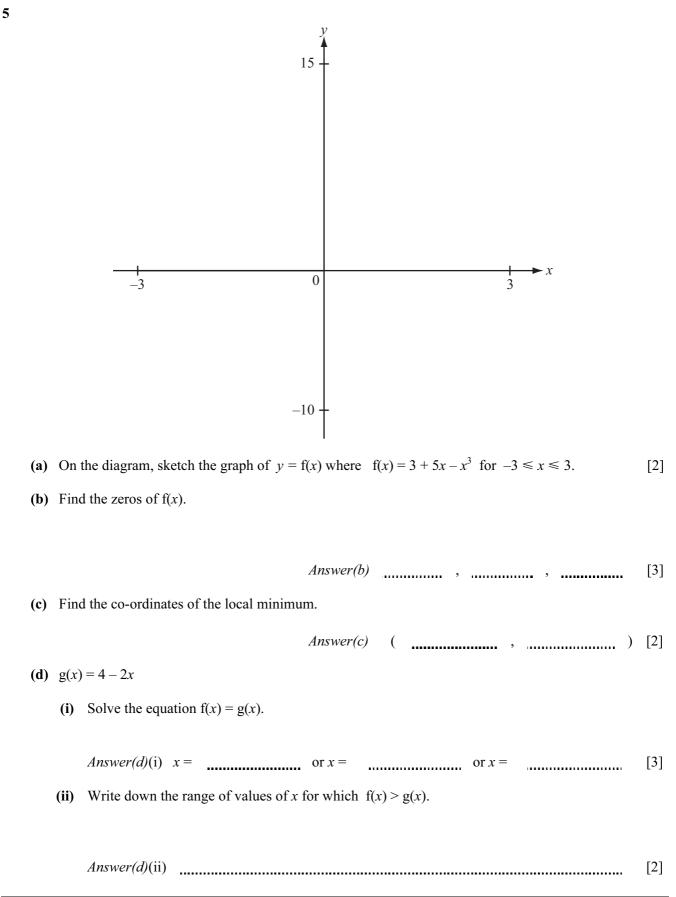
(b) Calculate the area of the sector *CAB*.

[2]

cm² [2] Answer(b)

0607/43/O/N/14

(c) Calculate the area of the sector *OAC*.

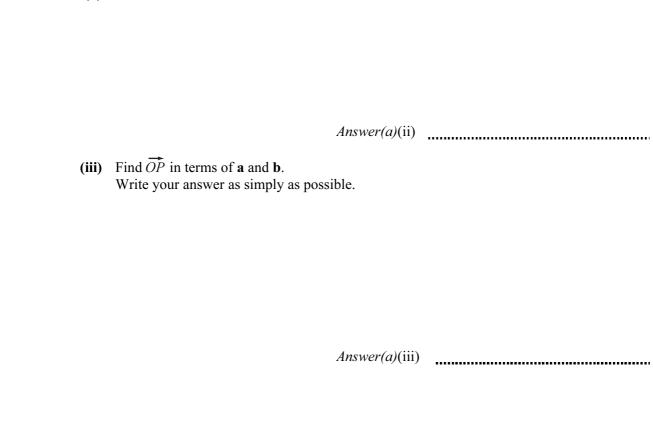

Answer(c) cm^2 [2]

(d) Calculate the area of the triangle *OAC*.

Answer(d) cm^2 [2]

(e) Using your answers to **parts** (b), (c) and (d), calculate the area of the shaded region.

Answer(e) cm^2 [2]


https://xtremepape.rs/

NOT TO SCALE			
Height	8 cm	12 cm	
Surface Area		$300\mathrm{cm}^2$	$800\mathrm{cm}^2$
Volume		$600\mathrm{cm}^3$	

6 Here is some information about three dolls that are all mathematically similar.

(a) Calculate the surface area of the smallest doll.

(b) Calculate the volume of the largest doll.

Answer(a)(i)

NOT TO SCALE

R

[1]

[1]

[2]

(ii) Find \overrightarrow{OD} in terms of **a** and **b**.

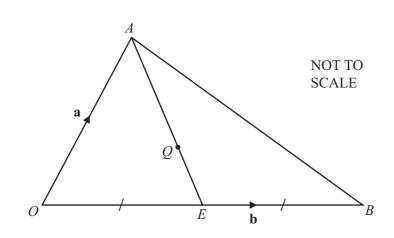
 $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. *D* is the midpoint of *AB* and $\overrightarrow{OP} = \frac{2}{3} \overrightarrow{OD}$.

a

(i) Find \overrightarrow{AB} in terms of **a** and **b**.

0

https://xtremepape.rs/


© UCLES 2014

b

D

A

7 (a)

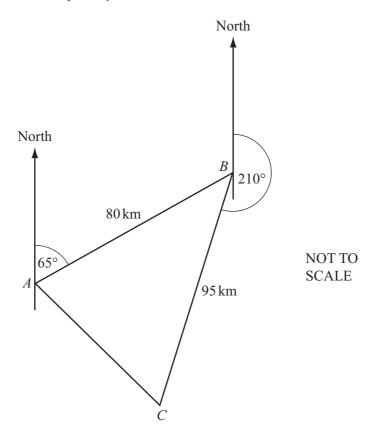
The triangle *AOB* is identical to the triangle in **part (a)**.

 $\overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{OB} = \mathbf{b}.$ E is the midpoint of \overrightarrow{OB} and $\overrightarrow{AQ} = \frac{2}{3}AE.$

(i) Find \overrightarrow{AE} in terms of **a** and **b**.

Answer(b)(i) [1]

(ii) Find \overrightarrow{OQ} in terms of **a** and **b**. Write your answer as simply as possible.


Answer(b)(ii)	[2]
From your answers to parts (a)(iii) and (b)(ii) , what can you say about the points P and Q ?	
Answer(c)	[1]

(c)

(b)

8 A ship sails 80 km on a bearing of 065° from *A* to *B*. It then sails 95 km on a bearing of 210° from *B* to *C*. It then sails back to *A*.

The diagram below shows this journey.

(a) Show that angle $ABC = 35^{\circ}$.

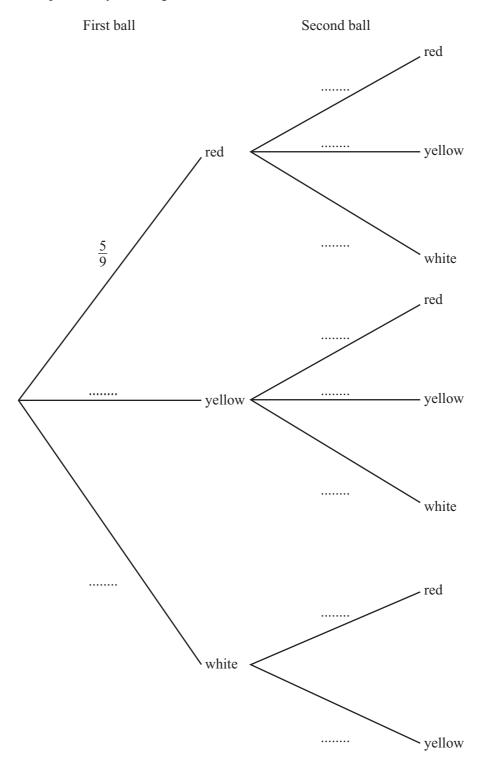
[1]

(b) (i) Calculate the distance the ship sails from C to A.

(ii) Calculate the bearing on which the ship sails from C to A.

Answer(b)(ii) [4]

- (c) The ship sails at 18 km/h from A to B. It then sails at 22 km/h from B to C and then at 15 km/h from C to A.
 - (i) Calculate the total time for the journey. Give your answer in hours and minutes.


Answer(c)(i) _____ hours _____ minutes [3]

(ii) Find the average speed for the whole journey.

Answer(c)(ii) km/h [2]

9 There are 9 balls in a bag.5 of these are red, 3 are yellow and 1 is white. Two balls are selected at random without replacement.

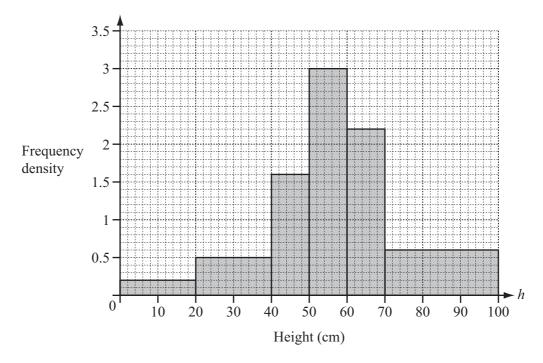
(a) Complete the probability tree diagram.

[3]

(b)	Find	the	prot	babi	ility	that
-----	------	-----	------	------	-------	------

(i) both balls are yellow,

Answer(b)(i) [2]


(ii) the two balls are different colours.

Answer(b)(ii) [3]

(c) Write down the probability that the second ball is red.

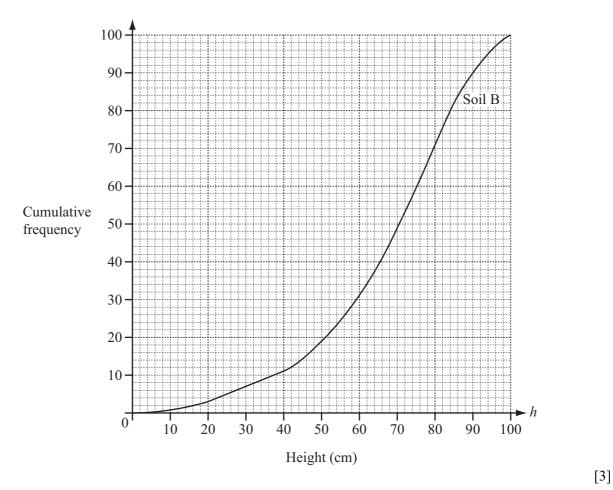
Answer(c) [1]

10 The heights, h cm, of 100 plants in each of two different soils, A and B, were recorded. The histogram shows the heights of the plants in soil A.

(a) Complete the frequency table using the information in the histogram.

Height (<i>h</i> cm)	$0 < h \le 20$	$20 < h \le 40$	$40 < h \le 50$	$50 < h \le 60$	$60 < h \le 70$	$70 < h \le 100$	
Frequency	4		16			18	
							[

(b) Calculate an estimate of the mean height of the plants in soil A.


Answer(b) cm [2]

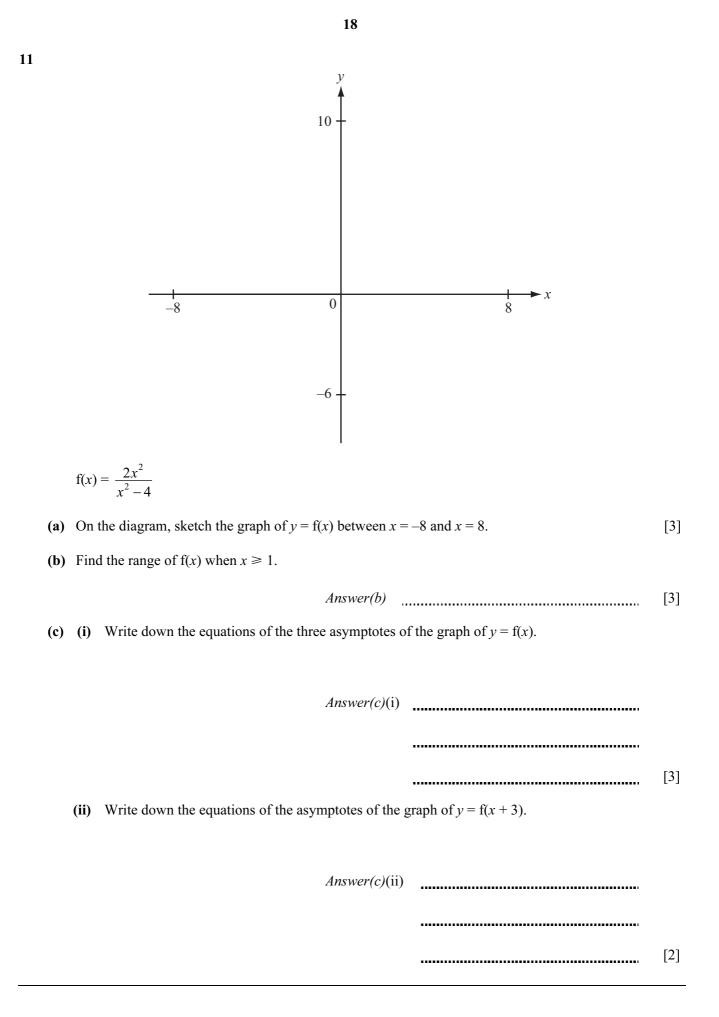
(c) Complete the cumulative frequency table for the heights of the plants in soil A.

Height (<i>h</i> cm)	$h \leq 20$	$h \leq 40$	$h \leq 50$	$h \le 60$	$h \leq 70$	$h \le 100$
Cumulative frequency	4					100

[2]

(d) The graph opposite shows the cumulative frequency curve for the heights of the plants in soil B.Using the same grid, draw the cumulative frequency curve for the heights of the plants in soil A.

(e) (i) In which soil is the median height greater? Show how you decide.


Answer(e)(i) [1]

(ii) In which soil do the heights of the plants have a greater inter-quartile range and by how much?

Answer(e)(ii) soil _____ by ____ cm [4]

(f) Estimate the number of plants in soil B with a height greater than 85 cm.

Answer(f) [2]

0607/43/O/N/14

https://xtremepape.rs/

A farmer makes a rectangular field.

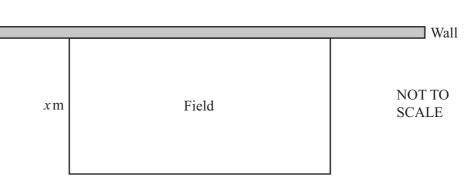
For one side of the field he uses a wall. He uses 100 m of fencing to make the other three sides. The width of the field is *x* metres.

(b) Find the width of the field when the area is 900 m^2 .

(a) Show that the area of the field, $A m^2$, is given by $A = 100x - 2x^2$.

Answer(b) m [3]

(c) Find the maximum area of the field.


Answer(c) m^2 [1]

(d) Another farmer uses 100 m of fencing to make a circular field. Find the area of this field.

Answer(d) m^2 [4]

[2]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.